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Stability of axisymmetric Taylor-Couette flow in hydromagnetics
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The linear marginal instability of an axisymmetric magnetohydrodynamics Taylor-Couette flow of infinite
vertical extension is considered. We are only interested in those vertical wave numbers for which the charac-
teristic Reynolds number is minimum. For hydrodynamically unstable flows minimum Reynolds numbers exist
even without a magnetic field, but there are also solutions withsmallercharacteristic Reynolds numbers for
certain weak magnetic fields. The magnetic field, therefore, destabilizes the rotating flow by the so-called
magnetorotational instability~MRI!. The MRI, however, can only exist for hydrodynamically unstable flow if
the magnetic Prandtl number, Pr, is not too small. For too small magnetic Prandtl numbers~and too strong
magnetic fields! only the well-known magnetic suppression of the Taylor-Couette instability can be found. The
MRI is even more pronounced forhydrodynamically stableflows. In this case we can always find a magnetic
field amplitude where the characteristic Reynolds number is minimum. These critical values are computed for
different magnetic Prandtl numbers and for three types of geometry~small, medium, and wide gaps between
the rotating cylinders!. In all cases the minimum Reynolds numbers are running with 1/Pr for small enough Pr
so that the critical Reynolds numbers may easily exceed values of 106 for the magnetic Prandtl number of
sodium (1025) or gallium (1026). The container walls are considered either electrically conducting or insu-
lating. For insulating walls with small and medium-size gaps between the cylinders~i! the critical Reynolds
number is smaller,~ii ! the critical Hartmann number is higher, and~iii ! the Taylor vortices are longer in the
direction of the rotation axis. For wider gaps the differences in the results between both sets of boundary
conditions become smaller and smaller.

DOI: 10.1103/PhysRevE.66.016307 PACS number~s!: 47.20.Ft, 47.65.1a
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I. INTRODUCTION

The longstanding problem of the generation of turbulen
in various hydrodynamically stable situations has found
solution in recent years with the so-called magnetorotatio
instability ~MRI!, also referred to as the Balbus-Hawley i
stability, in which the presence of a magnetic field has
destabilizing effect on a differentially rotating flow, provide
that the angular velocity decreases outwards with the rad
This MRI has been discovered decades ago@1,2# for ideal
Couette flow, but its importance as the source of turbule
in accretion disks with differential~Keplerian! rotation was
only recognized by Balbus and Hawley@3#.

However, the MRI has never been observed in laborat
@4–7#. Moreover, Chandrasekhar@2# already suggested th
existence of the MRI for ideal Taylor-Couette flow, but h
results for nonideal fluids for small gaps and within the sm
magnetic Prandtl number approximation demonstrated
absence of the MRI for hydrodynamically unstable flow. R
cently, Goodman and co-workers@8,9# claimed that this ab-
sence of MRI was due to the use of the small magn
Prandtl number limit. The magnetic Prandtl number is rea
very small under laboratory conditions (;1025 and smaller!.
Obviously, a proper understanding of this phenomenon
very important for possible future experiments, includi

*Electronic address: gruediger@aip.de
†Electronic address: dasha@astro.ioffe.rssi.ru
1063-651X/2002/66~1!/016307~8!/$20.00 66 0163
e
a
al

a

s.

e

ry

ll
e

-

ic
y

is

Taylor-Couette flow dynamo experiments. The depende
of a real Couette flow on magnetic Prandtl number and
width between rotating cylinders is investigated. The sim
model of uniform density fluid contained between two ver
cally infinite rotating cylinders is used with constant ma
netic field parallel to the rotation axis~Fig. 1!. The unper-
turbed state is any stationary circular flow of a
incompressible fluid. In the absence of viscosity, the class
such flows is very wide: indeed, ifV denotes the angula
velocity of rotation about the axis, then the equations of m
tion allow V to be an arbitrary function of the distanceR
from the axis, provided the velocities in the radial and t
axial directions are zero. For viscous flows, however,
class becomes very restricted: in fact, in the absence of
transverse pressure gradient, the most general form oV
allowed is

V~r !5a1b/R2, ~1!

wherea and b are two constants related to the angular v
locities V in and Vout with which the inner and the oute
cylinders are rotating. IfRin andRout (Rout.Rin) are the radii
of the two cylinders then

a5V in

m̂2ĥ2

12ĥ2
and b5V inRin

2 12m̂

12ĥ2
~2!

with
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m̂5Vout/V in and ĥ5Rin /Rout. ~3!

Following the Rayleigh stability criterion,d(R2V)2/dR.0,
rotation laws are hydrodynamically stable form̂.ĥ2. Taylor-
Couette flows with outer cylinders at rest (m̂50) are thus
never stable.

Here, in order to isolate the MRI we are mainly interest
in flows with rotating outer cylinders so that th
hydrodynamic-stability criterion,m̂.ĥ2, is fulfilled. Our ref-
erence case isĥ50.5 andm̂50.33.

II. BASIC EQUATIONS

R, f, andz are the cylindrical coordinates. A viscous ele
trically conducting incompressible fluid between two rot
ing infinite cylinders in the presence of a uniform magne
field parallel to the rotation axis admits the basic solut
UR5Uz5BR5Bf50 and

Bz5B05const, Uf5aR1b/R, ~4!

with U the velocity andB the magnetic field,a and b are
given by Eq.~2!. We are interested in the stability of th
solution. The perturbed state of the flow may be described

uR ,Uf1uf ,uz ,bR ,bf ,B01bz ,dP ~5!

with dP as the pressure perturbation.
The linear stability problem is considered with only ax

symmetric perturbations. By analyzing the disturbances
normal modes the solutions of the linearized magnetohyd
dynamical equations are of the form

uR5uR~R!evt cos~kz!, bR5bR~R!evt sin~kz!,

uf5uf~R!evt cos~kz!, bf5bf~R!evt sin~kz!,

uz5uz~R!evt sin~kz!, bz5bz~R!evt cos~kz!. ~6!

FIG. 1. Cylinder geometry of the Taylor-Couette flow.
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Stationary modes are always easier to excite than oscilla
ones@2,10#. So, only marginal stability will be considere
(v50). The derivation of the equations describing this si
ation is due to Chandrasekhar@2#; it should not be repeated
here. We only use a different normalization here. Letd
5Rout2Rin be the gap between the cylinders. We use

H5~Rind!1/2 ~7!

as unit of length, the Alfve´n velocity VA5B0 /(m0r)1/2 as
unit of perturbed velocity, andB0Pr1/2 as unit of perturbed
magnetic field with the magnetic Prandtl number

Pr5
n

h
, ~8!

n is the kinematic viscosity,h is the magnetic diffusivity.
Note that wave numbers are given in units ofH21.

Using the same symbols for normalized quantities as
fore, the equations take the form

~DD* 2k2!2uR1k2Ha2uR22k2Re
V

V in
uf50,

~DD* 2k2!uf1kHabf2Re
1

R

d

dRS R2
V

V in
DuR50,

~DD* 2k2!bR2kHauR50,

~DD* 2k2!bf2kHauf1Re PrR
d

dRS V

V in
DbR50 , ~9!

with

Ha5
B0H

Am0rnh
, Re5

V inH
2

n
, ~10!

where Ha is the Hartmann number, Re is the Reynolds n
ber of the inner rotation,r is the density,m0 is the magnetic
constant. Chandrasekhar’s notationsD5d/dR and D*
5d/dR11/R are also used.

Let us emphasize that Pr appears only once in the fo
equation of the system~9!. Recall that under terrestrial con
ditions Pr is small (;1025 and smaller!. If the approxima-
tion Pr50 is adopted, the governing tenth-order system~9!
can be factorized into an eighth-order system, which d
not involvebR , and a second-order system forbR @the third
equation of the system~9!#. This fact was recognized by
Chandrasekhar@2# for the case of a narrow gap; but it is tru
also in the case of a finite gap. An appropriate set of
boundary conditions is needed to solve the system~9!. The
situation is more difficult than in the small-gap-sma
Prandtl-number case where only eight boundary conditi
are needed. No-slip conditions for the velocity on the wa
are used throughout, i.e.,

uR50, uf50,
duR

dR
50 , ~11!
7-2
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STABILITY OF AXISYMMETRIC TAYLOR-COUETTE . . . PHYSICAL REVIEW E 66, 016307 ~2002!
~see@2#!. The magnetic boundary conditions depend on
electrical properties of the walls. The transverse currents
perpendicular component of magnetic field should vanish
conducting walls, hence

dbf

dR
1

bf

R
50, bR50. ~12!

The above boundary conditions~11! and ~12! are valid for
R5Rin and forR5Rout.

The situation changes for insulating walls. The magne
field must match the external magnetic field for noncondu
ing walls. The boundary conditions are different atR5Rin
and R5Rout due to the different behavior of the modifie
Bessel functions forR→0 andR→`, i.e.,

bf50,
]

]R
~RbR!5bR

kRI0~kR!

I 1~kR!
~13!

for R5Rin and

bf50,
]

]R
~RbR!52bR

kRK0~kR!

K1~kR!
~14!

for R5Rout where I n and Kn are the modified Bessel func
tions ~cf. @9#!.

The homogeneous set of equations~9! with boundary con-
ditions either Eqs.~11! and~12! for conducting walls or Eqs
~11!, ~13!, and~14! for insulating walls determine the eigen
value problem of the formL(m̂,ĥ,k,Pr,Re,Ha)50. System
~9! was approximated by finite differences. The typical nu
ber of grid points used in calculations was 200. The result
determinant,L, takes the value zero if and only if the value
Re are the eigenvalues. Since the determinant changes
on passing through a zero, an automatic search routine
be employed to locate these zeros. For given valuesm̂, ĥ, Pr,

FIG. 2. The stability line for Taylor-Couette flow with oute

cylinder at rest forĥ50.5 and Pr51. The flow is unstable above
the line. There is instability even without magnetic fields but
excitation is easier with magnetic fields with Ha.4.5. The line is
marked with those wave numbers for which the Reynolds numb
are minimum.
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Ha, which determine the basic velocity state and magn
field strength, we seek the minimum real positive Re o
real k>0 for which there is a solution forL50.

III. RESULTS FOR CONDUCTING WALLS

We start with the results for containers with conducti
walls and outer cylinders at rest but with various gap si
~medium, wide, and small!. In all these cases there are line
instabilities even without magnetic fields. We are here c
cerned with the influence of the magnetic field. If the resu
ing eigenvalue with magnetic field exceeds the eigenva
without magnetic field then we have only the well-know
effect of magnetic stabilization rather than magnetic desta
lization. As we shall see, this is indeed the case for su
ciently small magnetic Prandtl numbers.

A. Outer cylinder at rest

In Fig. 2 an outer cylinder at rest is considered (m̂50) for
a medium-size gap ofĥ50.5 and for Pr51. As we know for
vanishing magnetic field and forĥ50.5 the exact Reynolds
number for this case is 68.2~see@2#!—well represented by
the result for Ha50 in Fig. 2. But for increasing magneti
field the Reynolds number is reduced so that the excitatio
the Taylor vortices becomes easier than without magn
field. The minimum Reynolds number Recrit of about 63 for
Pr51 is reached for Hacrit.4 –5. This magnetically induced
subcritical excitation of Taylor vortices is due to the MR
We shall always refer to the minimum Reynolds number
the critical Reynolds number and the corresponding H
mann number as critical Hartmann number.

For stronger magnetic fields, the instability is suppres
by the magnetic field—as it must be—so that the Reyno
number grows without bounds. In Fig. 3 the same contai
is considered but for a small magnetic Prandtl number
1025. The minimum, which is well pronounced for Pr51
case, disappears completely. A suppression of the instab
by the magnetic field can only be observed.

rs

FIG. 3. The same as in Fig. 2 but for Pr51025. The minimum
for Pr51 has now disappeared completely.
7-3
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The results for small and wide gaps between the cylind
are presented in Fig. 4 and Table I. The situation is analog
to the medium-size gap. The magnetic suppression of
Taylor-Couette flow instability is only observed for small P

FIG. 4. The stability line for the flow in a small gap (ĥ
50.95) with an outer cylinder at rest and for Pr51025.

TABLE I. Conducting walls: Minimum Reynolds numbers an

related wave numbers for a flow with outer cylinder at restm̂
50).

ĥ Pr Ha Re k

0.25 1025 0.0 78.8 1.9
0.25 1025 1.0 84.4 1.9
0.25 1025 2.0 100. 2.0
0.25 1025 4.0 157. 2.1
0.25 1025 6.0 243. 2.3
0.25 1025 8.0 350. 2.5
0.25 1025 10.0 475. 2.7
0.25 1 0.0 78.8 1.9
0.25 1 1.0 71.4 1.8
0.25 1 2.0 62.1 1.7
0.25 1 4.0 57.7 1.6
0.25 1 6.0 61.9 1.5
0.25 1 8.0 68.7 1.4
0.25 1 10.0 76.6 1.3
0.95 1 0.0 185 13.6
0.95 1 10 190 13.3
0.95 1 20 203 12.6
0.95 1 40 248 10.9
0.95 1 60 303 10.5
0.95 1 80 362 8.4
0.95 1 100 423 7.6
0.95 2 0.0 185 13.6
0.95 2 10 173 12.8
0.95 2 20 166 12.0
0.95 2 40 185 10.6
0.95 2 60 220 9.4
0.95 2 80 261 8.4
0.95 2 100 303 7.6
01630
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This is the reason why Chandrasekhar did not find the M
in his detailed numerical calculations for small gaps and v
small magnetic Prandtl numbers. Figure 4 shows the re
for the small-gap-small-Prandtl approximation used
Chandrasekhar@2#. Obviously, the MRI does not work effi
ciently in the limit of small magnetic Prandtl numbers, i.e
for too low electrical conductivity.

In order to find a minimum due to the MRI the magne
Prandtl number must exceed some critical value, Prmin , for
hydrodynamically unstable flow (m̂,ĥ2). The critical
Prandtl number can be calculated by

Prmin50.2511.5ĥ220.75m̂2. ~15!

This expression provides reasonable accuracy of ab
30% for all calculated cases~more than presented here!. The
critical magnetic Prandtl numbers lie in the narrow interv
0.25 . . .1.75 for anym̂ andĥ. Thus, if the electrical conduc
tivity is so small as it is for sodium or gallium then the MR
cannot be observed by corresponding experiments with
drodynamically unstable flows.

B. Rotating outer cylinder

Another situation occurs if the outer cylinder rotates
fast that the rotation law no longer fulfills the Rayleigh c
terion, and a solution for Ha50 cannot exist. Then the non
magnetic eigenvalue along the vertical axis moves to infin
and we should always have a minimum. This is the ba
situation in astrophysical applications such as accretion d
with a Kepler rotation law. The main question is whether t
critical Reynolds number and the critical Hartmann numb
can be realized experimentally. The Figs. 5, 6, and Tabl
present the results for both various Hartmann numbers
magnetic Prandtl numbers for a medium-sized gap ofĥ
50.5. There are always minima of the characteristic R
nolds numbers for certain Hartmann numbers. The mini
and the critical Hartmann numbers increase for decrea

FIG. 5. The stability line forĥ50.5 and Pr51. The outer cyl-
inder rotates with 33% of the rotation rate of the inner cylinder
that, from the Rayleigh criterion, the hydrodynamic instability f
Ha50 disappears. The minimum Reynolds number is almost
same as in Fig. 2.
7-4
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magnetic Prandtl numbers. Forĥ50.5 andm̂50.33 the criti-
cal Reynolds numbers together with the critical Hartma
numbers are plotted in Fig. 7. For the small magnetic Pra
numbers we find rather simple relations. With

Rm5Pr Re, ~16!

and

Ha* 5APr Ha, ~17!

it follows

Rm.21, ~18!

and

Ha* .3.5. ~19!

Rm is the magnetic Reynolds number, Rm5V inH
2/h ~or

dynamo number! and Ha* is the Lundquist number Ha*
5BH/hAm0r. For small Pr both quantities do not depe
on the microscopic viscosity. Both the minimum magne

FIG. 6. The same as in Fig. 5 but for Pr51025.

TABLE II. Conducting walls: Minimum Reynolds numbers an

related wave numbers for flow with rotating outer cylinder (m̂

50.33) and medium-sized gap (ĥ50.5)

Pr Ha Re k

1024 200 8.533105 1.0
1024 300 2.193105 1.7
1024 350 2.153105 1.7
1024 400 2.173105 1.7
1024 500 2.383105 1.6
1022 20 8.993103 1.0
1022 25 2.963103 1.6
1022 30 2.323103 1.7
1022 35 2.223103 1.8
1022 50 2.443103 1.6
1022 70 2.993103 1.5
1022 100 3.923103 1.3
01630
n
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Reynolds number and the corresponding characteristic L
dquist number are thus independent of the value of the k
matic microscopic viscosity.

C. Wide gap

Let us now vary the size of the gap. In view of the e
perimental possibilities, we shall only work for conductin
fluids with the magnetic Prandtl number of sodium, i.
1025. In the present section cylinders with a gap withĥ
50.25 are discussed. The outer cylinder is either at
~Table I! or it is rotating with a frequency satisfying th
Rayleigh criterion for stability~Fig. 8!. In the first case, of
course, there is a solution without magnetic field, i.e.,
Ha50. The corresponding Reynolds number is 78.8. N
again that a minimum appears for Pr51 which, however,
does not survive the decrease of the magnetic Prandtl n
ber to realistic small values.

FIG. 7. The main results forĥ50.5 andm̂50.33: The critical
Reynolds numbers for given magnetic Prandtl numbers mar
with those Hartmann numbers where the Reynolds number is m
mum.

FIG. 8. The stability line for wide gap (ĥ50.25), Pr51025,

m̂50.1.
7-5
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For experiments with a hydrodynamically stable flow (m̂

.ĥ2), the minimum always exists~e.g., form̂50.1, see Fig.
8!. The resulting critical Reynolds number is 1.43106 and
the critical Hartmann number is about 600. Let us turn
first estimates. Withn51022 cm2/s the frequencyf of the
inner cylinder is

f 5
1.631025Re

ĥ~12ĥ !
S 10 cm

Rout
D 2

Hz, ~20!

so that

f 5
120

~Rout /10 cm!2
Hz ~21!

corresponding to the frequency of about 19 Hz for a c
tainer with an outer radius of 25 cm@11#.

For a Hartmann number with the density of liquid sodiu
(r.1 g/cm3) one finds

Ha5282S B

GaussD S Rout

10 cmDAĥ~12ĥ !Pr, ~22!

hence forĥ50.25 and Pr51025,

Ha50.39 S B

GaussD S Rout

10 cmD . ~23!

For a container of~say! 25 cm a field of 500 Gauss yields
Hartmann number of 500. Thus, it is not a problem to rea
Hartmann numbers of order 104 with the standard laborator
equipment. Note that the Hartmann number is maximum
the experiment withĥ50.5.

We have to realize that there is only suppression of
instability by the magnetic field for Pr51025 and hydrody-
namically unstable flow~Table I!. There is no minimum of
the Reynolds number due to the MRI instability. This effe
is a consequence of the low magnetic Prandtl number. A
must, the instability disappears for Ha50 and ĥ50.25 if
m̂50.1 ~Fig. 8!. However, we find the instability again for
finite Hartmann number. For Ha'500 an instability occurs
for a Reynolds number of about 106. For example, an experi
ment with a Reynolds number of 1.53106 and an increasing
magnetic field should yield the MRI instability between tw
known very sharp limits@12,13#. The rotation frequency o
the inner cylinder must fulfill the above relation~21!, i.e., a
container with an outer radius of 31 cm must rotate with
frequency of about 10 Hz~see@14#!.

D. Small gap

For small gaps and outer cylinder at rest there is no m
mum due to the MRI for magnetic Prandtl numbers equa
smaller than Prcrit , but it exists for Pm.Pmcrit , where Prcrit
is given by Eq.~15!. If the outer cylinder rotates so fast th
the hydrodynamic instability disappears the minimum ag
appears due to the MRI~Fig. 9!. However, the Reynolds
numbers are far too high for a technical realization~inner
01630
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rotation frequency is of order 103 Hz). Obviously, magne-
tohydrodynamics Taylor-Couette flows with too small ga
between the cylinders are not suitable for experimental wo

IV. RESULTS FOR INSULATING WALLS

For the sake of completeness containers with insula
walls must be considered. The~complicated! boundary con-
ditions are then given by the relations~13! and~14!. Surpris-
ingly, the basic differences can already be demonstrated
the simplest model given in Fig. 10 for the outer cylinder
rest and Pr51 ~see Fig. 2 for comparison!. Of course, the
curve starts with the same Reynolds number for Ha50. The
minimum, however, is deeper than in Fig. 2 and the cor
sponding Hartmann number is higher. Note that the vert
wavelength in the minimum islarger than in containers with
conducting walls. We check these findings under the rest
tion of small magnetic Prandtl number (1025) and for rotat-
ing outer cylinders for small~Fig. 11!, medium~Fig. 12!, and
wide ~Fig. 13! gaps and for the outer cylinder at rest~Table
III !. The results must be compared with the results given
Figs. 6, 8, 9, and Table I valid for conducting walls. F

FIG. 9. Small gap (ĥ50.95): The same as in Fig. 4 but for

rotating outer cylinder withm̂50.95, Pr51025. The critical Rey-
nolds number is extremely high.

FIG. 10. The same as in Fig. 2, but for insulating walls.
7-6
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small and medium gaps one finds indeed that~i! the mini-
mum Reynolds numbers are smaller,~ii ! the corresponding
Hartmann number is higher, and~iii ! vertical wave number is
smaller~i.e., the cells of Taylor vortices are vertically mo
elongated! for the container with insulating walls. For wid
gaps the critical Reynolds number is slightly higher for t
container with nonconducting walls, but the vertical size
the cell is practically the same.

V. VERTICAL CELL STRUCTURE

The unstable Taylor-Couette flow forms Taylor vortice
With our normalizations the vertical extentdz of a Taylor
vortex is given by

dz

Rout2Rin
5

p

k
A ĥ

12ĥ
. ~24!

The dimensionless vertical wave numberk is given in all of
the above figures.

FIG. 11. Small gap (ĥ50.95): The same as in Fig. 9, but for

rotating outer cylinder (m̂50.95) embedded in a vacuum. P
51025.

FIG. 12. Medium-size gap (ĥ50.5): The same as in Fig. 6 bu

for the rotating outer cylinder (m̂50.33) embedded in a vacuum
Pr51025.
01630
f
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In the case of hydrodynamically unstable flows we ha
dz.Rout2Rin for small magnetic field (Ha.0) indepen-
dently of gap size and boundary conditions~see Figs. 2, 10
and Tables I, III!. The cell has the same vertical extent as
has in radius~see@15#!.

As all our figures demonstrate, the influence of stro
magnetic fields on turbulence consists of suppression
deformation. The deformation consists of a prolongation
the cell structure in the vertical direction~ @16#! so thatdz is
expected to become larger and larger~the wave number be
comes smaller and smaller! for increasing magnetic field
This is true for Pr;1, but for smaller Pr the vertical cell siz
has a minimum for an intermediate value of the magne
field ~see Figs. 3 and Table I!.

The cell size is minimum for the critical Reynolds numb
for all calculated examples of hydrodynamically stable flo
with a conducting boundary~see, e.g., Figs. 5, 6, 8, and 9!.
This is not true, however, for containers with insulating wa
for which the cell size grows with increasing magnetic fie
For experiments with the critical Reynolds numbers the v
tical cell size is generally two to three times larger than
radial one. The dependence of the vertical cell size on
magnetic Prandtl number is illustrated in Fig. 14. T
smaller the magnetic Prandtl number the bigger are the c
in the vertical direction.

The influence of boundary conditions on the cell size d
appears for wide gaps between the cylinders. For the sm

FIG. 13. Wide gap (ĥ50.25): The same as in Fig. 8 but for th

rotating outer cylinder (m̂50.1) embedded in a vacuum. P
51025.

TABLE III. Insulating walls: Minimum Reynolds numbers an

related wave numbers for a flow with outer cylinder at restm̂
50).

ĥ Pr Ha Re k

0.95 1025 0.0 185 13.6
0.95 1025 20 254 12.3
0.95 1025 40 427 8.2
0.95 1025 60 635 5.2
0.95 1025 80 846 3.8
0.95 1025 100 1058 3.0
7-7
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and medium gap, however, one finds the cells vertically m
elongated for containers with insulating walls.

VI. DISCUSSION

We have shown how the MRI works in Taylor-Couet
flow experiments for fluids with high and low electrical co
ductivity and for conducting walls as well as for insulatin
ones. For given microscopic viscosity the electrical cond
tivity determines the magnetic Prandtl number which, in
present paper, is varied from 1 to 1025. The MRI is charac-
terized by a clear minimum in Reynolds number for a cert
~critical! magnetic field strength~or Hartmann number!.

However, there are drastic differences between hydro
namically stable and unstable flows. For hydrodynamica
unstable flows the minimum exists for Pr.Prmin , where

FIG. 14. The same as in Fig. 7 but for the vertical wave numb
y
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y

Prmin is given by Eq.~15!. The Prmin is of the order of unity.
This means that the MRI cannot be observed in real labo
tory conditions (Pr&1025).

If the outer cylinder rotates so fast that the flow is hydr
dynamically stable (m̂.ĥ2), the minimum Reynolds numbe
always exists for some magnetic field strength. The coo
nates of the minima depend strongly on the magnetic Pra
number Pr. The critical Reynolds number scales as 1
@17,18# with the magnetic Prandtl number and the critic
Hartmann number scales as 1/APr for small Pr~see Fig. 7!.
Therefore, for sufficiently small values of Pr, both the critic
magnetic Reynolds number Rm and the critical Lundqu
number Ha* hardly depend on the magnetic Prandtl numb
Thus, for hydrodynamically stable flows with small Pr, th
critical numbers are almost independent of viscosity.

From Eq. ~20! with n51022 cm2/s, ĥ50.5, and Re
.2.13106 for Pr51025 and m̂50.33 ~see Fig. 6! follows

f 5
135

~Rout/10 cm!2
Hz ~25!

for the frequency of the inner cylinder. Hence, a contain
with an outer radius of 30 cm and an inner radius of 15
requires a rotation of about 15 Hz in order to exhibit the M
for liquid sodium with its magnetic Prandtl number of 1025.
Following Eq.~19! the required magnetic field is about 90
Gauss.

The MRI has only been considered for axisymmetric d
turbances. According to the results for small gap and sm
Pr ~cf. @19#!, the nonaxisymmetric disturbances might
more unstable for small magnetic fields. The influence
nonaxisymmetric disturbances on the MRI will be cons
ered in a forthcoming paper.
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